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1. Figure S1 below shows an optical micrograph of Device B under
20x magnification which is similar in construction to Device A
(Figure 1a). The plate-type piezoelectric resonator is overlaid
with nine interdigitated top electrodes. Five of them are
connected to the RF-1 tab (not shown) on the left side via
thin connects while four of the remaining electrodes are
connected to the RF-2 tab (not shown) on the right side through
similar thin connects.

2. The COMSOL Multiphysics package uses the inhomogeneous
wave equation with sources (charges and currents) of the
following form, found in most graduate level electromagnetism
texts1, used for solution of the electric field (E-field) in the
computational domain:
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Where E is the unknown electric field (V m− 1) to be solved in
3D, ω is the angular frequency (rad s− 1), and μr, εr and σ are the
relative permeability, relative permittivity and electrical con-
ductivity respectively, specified by the properties of the

material. In addition μ0 and ε0 are the permeability (H m− 1)
and permittivity (F m− 1) of the free space, respectively. The
above frequency domain form of the equation assumes that
the resultant electric fields will be ‘wave-like’ and that the
power transfer will occur primarily through radiation.

3. The COMSOL2 coupled piezoelectric resonator Equations (S2)
and (S3) in the stress-charge form (so named due to the
dependent variables on the LHS of each equation) are of the
following form:

T ¼ cESþ etE ðS2Þ

D ¼ eSþ ε0εrSE ðS3Þ
where S is the strain tensor of rank 2, T is the stress (Nm− 2)
tensor of rank 2, E is the electric field (V m− 1) tensor of rank 1,

Figure S1 The optical micrograph shows Device B used for the
wireless energy transfer experiments in the lab, taken at 20x
magnification. It displays a plate-type piezoelectric resonator over-
laid with nine interdigitated top electrodes.

Figure S2 (a) The four element Butterworth Van Dyke equivalent
model used to model the piezoelectric resonator used in the
experiment. It consists of two parallel arms of which the series arm
(top) consists of Rm, Lm and Cm which represent the mechanical
motion of the resonator while the second arm (below) consists of
the capacitance C0. (b) A two-port three-element pi-network is used
to model the entire piezoelectric resonator along with connecting
coaxial cables. Each element of the network has internal impedance
(Za, Zb and Zc).
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and D is the electric charge density (C m− 2) tensor of rank 1.
The material parameters cE (tensor of rank 4), e (tensor of rank
3) and εrS (tensor of rank 2) correspond to the material stiffness
(N m− 2), coupling properties (C m− 2) and relative permittivity
at constant strain, respectively. In addition, ε0 is the permittivity
of free space (F m− 1) and et represents the transpose of the
tensor e. Equation (S2) describes the indirect piezoelectric
effect, while equation (S3) describes the accompanied direct
effect piezoelectric effect.

4. The Butterworth Van Dyke3 (BVD) model is traditionally used to
simplify and characterize the piezoelectric resonator and
consists of four lumped element components. The model
(Figure S2a) consists of two arms in parallel; the first containing
Capacitance C0, which is a purely electrical quantity physically
representing the top electrodes and the bottom ground plane,
while the second arm contains the resistance Rm, inductance Lm,
and capacitance Cm. Qualitatively, Rm, Lm and Cm represent the
motional arm and determine the ‘series’ resonance, where
the admittance of the resonator rises to value ‘1/Rm’ at a
frequency where the series inductance Lm cancels the series
capacitance Cm.

The S21 data was recorded for a two-port system, consisting
of not only a piezoelectric resonator but also a coaxial cabling
system connecting the input and output ports of the resonator.
To model such a system a two-port, three-element, pi-network
was used (Figure S2b). Each of the three elements in the
network has discrete internal impedances namely Za and Zc
corresponding to the cable connections and Zb corresponding
to the BVD model of the piezoelectric resonator. The measured
S-parameter data relating the ratio of output to input voltage,
for this two-port pi-network was then converted to Z
parameters (Z11, Z21, Z12 and Z22) for the same, relating the
input and output voltage and currents of the two-port network
using conversion formulas given in literature4, using line
impedance Z0 of 50 Ω. Employing the reciprocity of a passive
element network, we have Z21 = Z12, giving the following Z-
parameter equations in terms of internal impedances, Za, Zb and
Zc of the pi-network.

Z11 ¼ Za Zb þ Zcð Þ
Za þ Zb þ Zc

Z12 ¼ ZaZc

Za þ Zb þ Zc

Z22 ¼ ZcðZa þ ZbÞ
Za þ Zb þ Zc

The above equations can be inverted to yield explicit
expressions for each impedance.

Za ¼ Z11Z22 - Z2
12

Z22 - Z12

Zb ¼ Z11Z22 - Z2
12

Z12

Zc ¼ Z11Z22 - Z2
12

Z11 - Z12

All transformations up to this point are exact. However, the
only approximation and possible source of error is modeling
of the resonator and the connections by a three-element pi-
network, while ignoring the more complex parasitic topologies.
However, in first order approximations, this model is valid and
can provide reasonable results. In particular, the impedance Zb
is of interest as it represents the input impedance of the BVD
model circuit. A Matlab algorithm performs these calculations on
each measured data set and converts it to the impedance Zb

from which are extracted the series and parallel resonance
frequency fs and fp along with the corresponding impedance
values zs and zp at the respective frequencies. These values are
used with the following relations to extract the lumped elements
of the BVD.
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Here, ωs and ωp are the corresponding angular frequencies to
both fs and fp respectively.
The response of the BVD circuit to a voltage excitation reveals

the input admittance of the model, which is derived as follows.
Considering a voltage excitation of the form

Vs ¼ V0exp
iot

This excitation results in the following current response I1 and I2
having same frequency ‘ω’ as the exciting voltage in each arm,
1 and 2 (Figure S3):

I1 ¼ I01exp
iot

I2 ¼ I02exp
iot

For Arm-1 the following Voltage equations results:

Vs ¼ Q1

C0

Figure S3 The BVD model under voltage (Vs) excitation results in the
total current response Is flowing in the circuit which is the sum of
the currents I1 and I2 through each arm as shown. The voltage across
each arm is equal to Vs.



where Q is the charge and is related to the current by the
following relation:

Q ¼
Z

Idt

Hence, the equation for I1 in terms of the exciting voltage Vs

I1 ¼ VsioC0

Similarly, the voltage equation for arm-2 becomes

Vs ¼ I2Rm þ Q2

Cm
þ Lm

dI2
dt

Using the charge-current relation from before and the voltage-
current relation for an inductor,

VL ¼ Lm
dI
dt

results in the following equation for arm-2 current I2 in terms of
exciting voltage Vs

I2 ¼ Vs

Rm - i
oCm

þ ioLm

The total current response of the circuit then becomes

Is ¼ I1 þ I2

Is ¼ VsioC0 þ Vs

Rm - i
oCm
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The LHS of the above equation is the input admittance of the
BVD circuit (YBVD), which is complex, and its real (GBVD) and
imaginary (BBVD) parts reveal the amplitude and phase
information given by the following equations after simple
algebraic manipulations:

YBVD ¼ Rm
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The earlier calculated values of the series Resistance (Rm),
Inductance (Lm) and Capacitance (Cm) from the impedance data
Zb is used to plot the real part of the admittance (GBVD), which is
a lorentzian.

5. As shown in the schematic presented in Figure 1b the electric
field undergoes fringing along the length of the patch. These
fringing fields travel in both the substrate and air hence an
effective dielectric constant εeff is used. In addition the same
fringing fields causes the patch antenna to appear longer thus
an effective Length Leff is introduced. Analytical expressions for
calculation of the effective length, dielectric constant and the

resonant frequency of the patch are presented below5.

εreff ¼ εr þ 1
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Leff ¼ Lþ 2ΔL

Where L and W are the length and width of the patch
respectively while ε and h are the dielectric constant and height
of the piezoelectric material respectively. The resonant
frequency of a patch antenna is given by the following
equation5:

f r ¼ c
2Leff

ffiffiffiffiffiffiffiffi
εreff

p

where c is the speed of light given approximately as 300 m s− 2.
Thus for a patch of L 87-μm, W of 25 μm, piezoelectric

substrate height of 2-μm and a dielectric constant of 9.00, all
corresponding to one of the patches of Device A the resonant
frequency as per the above is given by 603.33 GHz.
The efficiency of Device A is dependent on the efficiency of the
top interdigitated array of patch electrodes. The efficiency of
this array is given as the ratio of the power the device outputs
to the wireless power captured by the device from the
transmission bi-conical antenna. The output power from the
device can be calculated using the S21 parameter from the
network analyzer (VNA) data. The input power into Device-A is
taken as the power irradiating the resonator due to the
transmission bi-conical antenna at each of the 10 measurement
distances (6,8,10,12,16,20,24,28,32 and 36 inches). This input
power is the product of the power density at each of these
distances, as measured by a portable power meter, and the
effective area (Aeff) of the top interdigitated array of patch
antennas. The maximum effective area (Aeff) of any antenna is
related to its maximum directivity by5,

Aef f ¼ λ2D0

4π

Where, lambda (λ) is about 2.5 m corresponding to the
irradiating wave at a frequency of 121.7 MHz and D0 is the
directivity of the top interdigitated patch electrode array. This
directivity (D0) is the product of the directivity of a single patch
electrode (D1) and the array factor. Realizing that a patch
antenna can be modeled as two radiating slots separated by a
length Leff the far-field electric field pattern is then given as5,

Eϕ ¼ þj
k0hWE0e - jk0r
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also Er≈EΘ≈0 in the far-field. In addition, for small substrate
heights k0hoo1 so the sin(X)/X term becomes = 1, hence
we get

Eϕ ¼ þj
k0hWE0e - jk0r

2πr
siny

sinZ
Z
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where
Eϕ= electric field (V m− 1)
h=patch substrate height (2e− 6m)
W=width of the patch (25e− 6 m)



fr= resonance frequency of the patch 603.33 GHz
λ0= free space wavelength given by c/fr (5.00e

− 4 m)
k0= free space wave number given by 2pi/λ0 (12.566e

3 m − 1)
From the above the radiation intensity U (W/sr) is given by,

U ¼ r2

2η0
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Where ΙEΦΙ
2 = EΦ. E

*
Φ. Also η0 is the impedance of free space

about 377 Ω. Considering that the product of the electric field
and the height of the substrate gives the voltage across each
slot we have, V0 = E0h. Power radiated Prad (W) can be calculated
via the integration of the radiation intensity U (W/sr), over the
solid angles.

Prad ¼aUdΩ ¼
Z 2π

0

Z π

0
Usinydydϕ

Prad is given in Watts (W) and the element solid angle
dΩ= sinΘdΘdΦ, thus integrating the radiation intensity equa-
tion over the solid angles, we get Prad as,

Prad ¼ V0j j2
2πη0

Z π

0

sin k0W
2 cosy

	 

cosy

 !2

sin2ysinydy

Directivity of an antenna is the ratio of the radiation intensity
(Umax) in a given direction from the antenna to the radiation
intensity averaged over all directions (U0). The average radiation
intensity =U0 = (Prad)/4π.

D1 ¼ Umax

U0
¼ 4πUmax

Prad
Umax =max radiation intensity (W/solid angle)
U0 = isotropic source radiation intensity (W/solid angle)
Prad = total power radiated (W)
The maximum radiation intensity given as Umax (W/sr) as

follows,

Umax ¼ r2
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which reduces to,

Umax ¼ V0j j2
2η0π2
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where

k0 ¼ 2π
λ0

Thus the directivity of a single slot using the above becomes,

D1 ¼ Umax

U0
¼ 4πUmax
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A numerical estimation for the integral I, is given as

I1 ¼ - 2þ cos Xð Þ þ XSi Xð Þ þ sin Xð Þ
X

Where,
W=width of the patch (25e− 6 m)
h=height of the substrate (2e− 6 m)

fr= resonance frequency of the patch 603.33 GHz
λ0= free space wavelength given by c/f (5.00e− 4 m)
k0= free space wave number given by 2pi/λ0 (12.566e

3 )
X= k0W= 0.3
Si is the sine integral for which the values of Si(X) can be
found from tables5

I1 for X= 0.30 is calculated to be 0.03.
The directivity D1 for the first slot comes out to be 3.2898
(dimensionless). The directivity of the second slot can be
calculated considering that the two slots separated by distance
Leff form a linear array of two elements for which the directivity
(Dslots) is give by5,

Dslots ¼ 2Nd
λ

N= 2 (number of elements)
d=distance between the slots Leff (8.8696e

− 5 m).
λ= λ0 free space wavelength (5e− 4 m)
Dslots = 0.7095

Using D1= 3.2898 and Dslots = 0.7095 the directivity for one
patch is given by

Dpatch ¼ D1 � Dslots

Giving Dpatch = 2.334 which is the directivity of a single
patch antenna for Device A. There are 4 sets of interdigitated
patch antennas in Device A (8 patch antennas in total) out
of these the signal output is only from one set of 4
patch antennas. Hence the product of the directivity of a single
patch (2.334) and the directivity of the linear array of 4 patch
antennas each separated form the other by a distance d of
37.86μm gives an array directivity Darray of 0.6057, using N= 4,
and λ= λ0 in,

Darray ¼ 2Nd
λ

This gives the total directivity, D0 as

D0 ¼ Dpatch � Darray ¼ 2:334 � 0:6057 ¼ 1:4138

Which gives the total directivity of our patch antenna system as
D0 equal to 1.4138 (dimensionless). This total directivity can be
used now to calculate the effective area (Aeff) of the patch
antenna as given by the expression before. Once the effective
area is known the input power to Device A can be calculated
and thus the efficiency as described earlier.

6. Figure S4 below shows the schematic fabrication scheme of the
piezoelectric resonators.

The piezoelectric resonators are fabricated in a top-down
scheme. The wafer used consists of the following layers:

● 1 μm aluminum nitride (AlN) as the device layer.
● 100 nm of gold (Au) as the ground—electrode used for

piezoelectric actuation.
● 5 μm of Single crystal silicon (SCS) used as the sacrificial layer.
● 1 μm of silicon oxide
● 800 μm of poly silicon as the handle layer.

The wafer layers are presented in Figure S4a. PMMA is spun at
1600 rpm for 40 seconds. The device pattern is transferred to
the PMMA via E-beam lithography (EBL) using an s.e.m. with a
beam blanker (Figure S4b). After the pattern is developed
250 nm thick layer of Gold (Au) is deposited via e-beam
evaporator (Figure S4c). Following this deposition and subse-
quent lift-off, the AlN is etched using a Reactive Ion Etching (RIE)
process (Figure S4d). The RIE uses a sulfur hexafluoride (SF6)
and argon mixture in a ratio of 25/30 sccm respectively, at
300 W and 35 mTorr pressure. This recipe etches away the
micron thick AlN layer in about 40 min (Figure S4e). The top and
ground electrodes are patterned by applying PMMA again as



before and transferring the pattern via EBL (Figure S4f). The
resulting pattern (Figure S4g) is etched using the RIE for
approximately 3 min using the AlN recipe as before (Figure S4h),
revealing the top and ground electrodes (Figure S4i). Once the
sacrificial layer is exposed (Single crystal silicon) the RIE is
employed again to release the resonator structure (Figure S4j).
A low power SF6 plasma gives an almost isotropic etch of the

sacrificial layer (Figure S4k). The power and pressure are set to
150 W and 200 mTorr, respectively. The etch rate is found to be
rather non-linear, which was slower for the first minute or so.
Only direct observation under an s.e.m. can ensure the
complete suspension of the resonator structure.

7. It is well known that linearly polarized systems are susceptible
to multi-path interference and reflections. We assert that the

Figure S5 The experimental setup in the lab. (a) Side view of the setup showing the vertical mount on which the resonators wire bonded to
the PCB are affixed. The mount is moved in the straight line on the optical table from the biconnical antenna. (b) Another view of the setup
showing the axis of the biconnical antenna. In both views the Vector Network Analyzer is placed in the rack above the optical table.

Figure S4 Shows the process flow diagram of the piezoelectric resonator fabrication. (a) The wafer used consists of multiple layers which are
operated upon in a top-down fabrication method to reveal the resonators. (b) Wafer coated with PMMA is operated upon by e-beam
lithography. (c) Gold deposition. (d) Lift-off creates the desired pattern with metal mask. Anisotropic etch of AlN with RIE. (e) Piezoelectric
resonator etched. (f) PMMA is spun and top and bottom electrode patterns are transferred via e-beam lithography. (g) Pattern is developed.
(h) RIE anisotropic etch of top and bottom electrodes. (i) Top and bottom electrodes are etches. (j) With metal mask isotropic etch, RIE, of
sacrificial layer. (k) Resonator is suspended.



non-intuitive response observed in our data (refer Figure 3b in
the manuscript) is due to interference and reflections caused by
the presence of reflective surfaces such as optical table, walls,
reflective surfaces, data measurement equipment etc. To
provide credence to this assertion we present COMSOL
simulations, which measure power density at specified intervals
(6–28 inches) for both an ideal and non-ideal situation, as,
explained below. We also provide results of an experiment
carried out outside the lab where reflective surfaces are far
removed.
Two views of our in-lab experimental setup are presented in

Figure S5. The micron sized piezoelectric resonators are wire-
bonded to a PCB that is in turn affixed on the vertical mount
facing the biconnical antenna directly as shown. All un-necessary
equipment’s were removed from the vicinity of the experimental
setup. Nearby walls and racks however are fixed and cannot be
removed.
COMSOL simulations were made to calculate the power density

(Wm− 2) at each of the 6, 8, 10, 12, 16, 20, 24 and 28 inch distances
from a fixed antenna source for both an ideal scenario (without
the presence of any lab equipment’s, walls, optical tables etc.) and
a non-ideal scenario which took into account the presence of the

immovable and essential lab data equipment, with the following
assumptions for simplification:

a. A dipole antenna is used in the simulations since it is
operationally similar to a biconnical antenna.

b. The spherical computational domain for both simulations
around the dipole antenna is halved via a symmetric plane,
which serves to reduce computational memory require-
ments and time.

For both simulations and subsequent results discussed the
dipole antenna axis (as shown in Figure S5b) is aligned with the
z-axis of the simulation, as per the axis-orientation markers.
Figures S6a and b shows views of the hemispherical computational
domain where power density (Wm−2) measurements are carried
out from 6–28 inches. Figure S6c shows the ideal radiation pattern
of a dipole antenna, which is a dough-nut shaped ring, revolved
about the axis of the antenna (z-axis of the simulation). Figure S6d
shows the plot of the power density vs. distance (inches) and depicts
an intuitive gradual decline response as the receiver (resonator) is
moved away from the source.
Figure S7 shows the simulation and results related to

the non-ideal simulation. Similar calculations for power density

Figure S6 (a) Shows the hemispherical computational domain and the model dipole antenna. Power density measurements are made at each
of the distances between 6–28 inches. (b) Another view of the hemispherical domain. (c) The resultant dough-nut shaped radiation pattern of
a dipole antenna. (d) The power density vs. distance plot showing a gradual decline.



(Wm− 2) as before were carried out at each of the distances
between 6–28 inches. A rough model of the optical table and rack,
as seen in Figures S5a and b above, is introduced in the simulation
to observe the effect of reflective surfaces. Figures S7a and b show
two views of the simulation. Due to the presence of the reflecting
surfaces the ideal doughnut shaped radiation pattern of
Figure S6c is distorted now as seen in Figures S7c. This causes a
non-intuitive response in the Power density vs. distance plot in
Figures S7d.
While the simulations performed are not to validate the results

of the experiments but to provide an understanding that the
presence of reflecting surfaces cause the non-intuitive responses
observed in our data. However it may be observed that the shape
of the response of Figures S7d is similar to that of the
experimental response of GBVD vs. Distance of Figure 3b in the
manuscript.
Furthermore, we present (Figure S8) the results of the

experiments carried out, outside the lab (open-air) where the
nearest reflecting wall was at least 8 to 10 wavelengths away from
the resonator and source antenna setup with the exception of
only the measurements equipment’s which had to be placed
nearby. The results of GBVD vs. distance for 0 and 180-degree
polarizations depict an approximate monotonic and intuitive
decline. Thus providing credence to the assertion that the non-
intuitive data observed is due to the presence of the reflecting
surfaces near our experimental setup.

Figure S7 (a) Shows the hemispherical computational domain containing the dipole antenna and models of the optical table, adjacent wall,
top rack and VNA. Power density measurements are made at each of the distances between 6–28 inches. (b) Another view of the same
hemispherical domain. (c) The resultant distorted radiation pattern of the dipole antenna due to reflections and multi-path interference. (d)
The power density vs. distance plot showing un-intuitive response.

Figure S8 Shows the open-air experiment results for 0 and 180
degree orientations. An approximate monotonic decline can
be seen.
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