A Nanomechanical Fredkin Gate

Irreversible logic operations inevitably discard information, setting fundamental limitations on the flexibility and the efficiency of modern computation. To circumvent the limit imposed by the von Neumann–Landauer (VNL) principle, an important objective is the development of reversible logic gates, as proposed by Fredkin, Toffoli, Wilczek, Feynman, and others. Here, we present a novel nanomechanical logic architecture for implementing a Fredkin gate, a universal logic gate from which any reversible computation can be built. In addition to verifying the truth table, we demonstrate operation of the device as an AND, OR, NOT, and FANOUT gate. Excluding losses due to resonator dissipation and transduction, which will require significant improvement in order to minimize the overall energy cost, our device requires an energy of order 104kT per logic operation, similar in magnitude to state-of-the-art transistor-based technologies. Ultimately, reversible nanomechanical logic gates could play a crucial role in developing highly efficient reversible computers, with implications for efficient error correction and quantum computing.

http://dx.doi.org/10.1021/nl403268b

Previous
Previous

Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance.

Next
Next

A Noise-Assisted Reprogrammable Nanomechanical Logic Gate